K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

Đáp án B

Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình

Do đó: B( 2; -1)

Tương tự: tọa độ điểm C( 1; 9)

PT các đường phân giác góc A là:

Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3  ta có:

T1(B). T1(C) < 0 và T2(B) T2(C) >0.

Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.

Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

10 tháng 11 2018



NV
9 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{5}{7};\dfrac{1}{7}\right)\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow C\left(-\dfrac{6}{5};-\dfrac{9}{5}\right)\)

Phương trình đường thẳng qua C và vuông góc phân giác góc B:

\(2\left(x+\dfrac{6}{5}\right)+1\left(y+\dfrac{9}{5}\right)=0\Leftrightarrow2x+y+\dfrac{21}{5}=0\)

Gọi E là hình chiếu của C lên phân giác góc B \(\Rightarrow\left\{{}\begin{matrix}2x+y+\dfrac{21}{5}=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{47}{25};-\dfrac{11}{25}\right)\)

Gọi F là điểm đối xứng E qua phân giác góc B \(\Rightarrow\) F thuộc AB đồng thời E là trung điểm CF \(\Rightarrow F\left(-\dfrac{64}{25};\dfrac{23}{25}\right)\)

\(\Rightarrow\overrightarrow{BF}\Rightarrow\) pt BF (chính là phương trình AB)

Làm tương tự với AC

NV
29 tháng 6 2021

AB vuông góc CH nên nhận \(\left(1;1\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

B là giao điểm BN và AB nên tọa độ thỏa mãn: 

\(\left\{{}\begin{matrix}2x+y+5=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow B\left(-8;11\right)\)

Gọi D là điểm đối xứng A qua BN \(\Rightarrow D\in BC\)

Phương trình đường thẳng d qua A và vuông góc BN (nên nhận \(\left(1;-2\right)\) là 1 vtpt) có dạng:

\(1\left(x-1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+3=0\)

Gọi E là giao điểm d và BN \(\Rightarrow E\) là trung điểm AD

Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}2x+y+5=0\\x-2y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{13}{5};\dfrac{1}{5}\right)\)

\(\Rightarrow D\left(-\dfrac{31}{5};-\dfrac{8}{5}\right)\Rightarrow\overrightarrow{BD}=\left(\dfrac{9}{5};-\dfrac{63}{5}\right)=\dfrac{9}{5}\left(1;-7\right)\)

\(\Rightarrow\) Đường thẳng BC nhận (7;1) là 1 vtpt

Phương trình BC:

\(7\left(x+8\right)+1\left(y-11\right)=0\Leftrightarrow7x+y+45=0\)